
Software Development Methodologies

About this white paper: This paper was written by David C. Young, an employee of CSC. It was
written as supplemental documentation for use by the HPC account holders at the Alabama
Supercomputer Center (ASC). This was originally written in 2012, and updated in 2013.

Software development methodologies have traditionally been covered little or not at all in some of the
IT degree curriculums. However, individuals working for professional software development
organizations find that it is a big part of their work environment. There is currently a trend of managing
other types of work following the general scheme of a software development management practice.

A software development methodology is a way of managing a software development project. This
typically address issues like selecting features for inclusion in the current version, when software will be
released, who works on what, and what testing is done.

No one methodology is best for all situations. Even the much maligned waterfall method is appropriate
for some organizations. In practice, every organization implements their software development project
management in a different way, which is often slightly different from one project to the next. None the
less, nearly all are using some subset or combination of the ones discussed here.

Choosing an appropriate management structure can make a big difference in achieving a successful end
result when measured in terms of cost, meeting deadlines, client happiness, robustness of software, or
minimizing expenditures on failed projects. As such, it is worth your time to learn about a number of
these and make your best effort to choose wisely.

There are definitely trends in the project management field. The following is a discussion of
methodologies that were getting a fair amount of exposure when this was written in 2012. This
document is intended to give you just enough comparison to choose which to investigate further.

Waterfall - This is the original, traditional method of software development. It approaches software
development like you would approach building a house... with the view that changes after the fact are
prohibitively expensive. This is a linear method in which there is a big emphasis on collecting
requirements and designing the software architecture before doing development and testing. The
advantage of this is that the project is well planned, minimizing on mid-project costs for changing
requirements, and that these projects tend to be well documented. This typically results in major version
releases with a significant number of new features every few years. The disadvantage is that it is very
hard to adjust the feature set in the middle of development, which often happens as problems are
uncovered in development or changing business environments change what is needed in the software.
This is such a problem that many organizations put in a place a "feature freeze" in which they refuse to
alter the features to be included in a given version once software writing begins, and thus needed
features get pushed to later major versions forcing the users of the software to wait years for those
features. Anyone who has worked on a waterfall managed project has experienced the frequent flaps
over feature changes suggested by software developers, management, and clients which often necessitate
an inefficient micromanagement format... all of which are arguments against this process.

In the current lexicon, "Agile", "Crystal" and "Unified Process" are general terms for families of
similar software development methodologies.

Agile family - Agile methods are meant to adapt to changing requirements, minimize development
costs, and still give reasonable quality software. Agile projects are characterized by many incremental
releases each generated in a very short period of time. Typically all members of the team are involved
in all aspects of planning, implementation, and testing. This is typically used by small teams, perhaps
nine or fewer, who can have daily face-to-face interaction. Teams may include a client representative.
There is a strong emphasis on testing as software is written. The disadvantages of the Agile methods are
that they work poorly for projects with hundreds of developers, or lasting decades, or where the
requirements emphasize rigorous documentation and well documented design and testing.

• SCRUM - is currently the most popular implementation of the agile ideals. Features are added
in short sprints (usually 7-30 days), and short frequent meetings keep people focused. Tasks are
usually tracked on a scrum board. The group is self-organizing and collaboratively managed,
although there is a scrum master tasked with enforcing the rules and buffering the team from
outside distractions.

• Dynamic Systems Development Model (DSDM) - is an agile method that sets time, quality,
and cost at the beginning of the project. This is accomplished by prioritizing features into musts,
shoulds, coulds, and won't haves. Client involvement is critical to setting these priorities. There
is a pre-project planning phase to give the project a well-considered initial direction. This works
well if time, cost, and quality are more important than the completeness of the feature set.

• Rapid Application Development (RAD) - is a minimalist agile method with an emphasis on
minimizing planning, and a focus on prototyping and using reusable components. This can be
the best choice when a good prototype is good enough to serve as the final product. RAD has
been criticized because the lack of structure leads to failed projects or poor quality products if
there is not a team of good developers that feel personally committed to the project.

• Extreme Programming (XP) - is a frequent release development methodology in which
developers work in pairs for continuous code review. This gives very robust, high quality
software, at the expense of twice the development cost. There is a strong emphasis on test driven
development.

• Feature-Driven Development (FDD) - is an iterative development process with more emphasis
on planning out the overall architecture, followed by implementing features in a logical order.

• Internet-Speed Development - is an iterative format that emphasizes daily builds. It is tailored
to the needs of open source projects where volunteer developers are geographically distributed,
and working around the clock. The project is built from a vision and scope statement, but there
are no feature freezes. Development is separated into many small pieces that can be developed
in parallel. The down side of this process is that the code is constantly in flux, so there are not
necessarily stable release points where the code is particularly well tested and robust.

Evo - is an older, less known, evolutionary system developed at Hewlett-Packard. It bears significant
similarity to agile development, and adds in a link to sales and manufacturing cycles. Unlike Agile, it
puts more emphasis on having a technical manager to assign tasks. There should also be a user liaison,
sometimes someone who is a subject matter expert in their own right. Evo is reportedly very successful,
and probably only lacks the quantity of publicity that Agile has received. If your old school
management is reticent to adopt the self-organizing, self-managing Agile format, consider Evo.

Unified Process family - An interactive development process for larger, often more bureaucratic,
development teams. There is a strong focus on use cases, which in turn suggest requirements. There is
also an emphasis on choosing the best architecture. The highest risk tasks are done first in order to give
an early break point where the project can be cancelled if it is doomed to failure. The labor pool is used
efficiently by often having various percentages of requirements, design, implementation, and testing all
being performed in parallel.

• Rational Unified Process (RUP) - (name owned by IBM) This implementation of the unified
process is an IBM product consisting of documentation, management software tools, training,
and certifications.

• Open Unified Process (OpenUP) - An open source implementation developed by the Eclipse
foundation. It targets small, collocated teams that want the structure of a unified process.

• Essential Unified Process (EssUP) - EssUP is a list of processes from unified process and other
methodologies. The project leader/group then picks from this list to tailor the process to their
needs.

• Agile Unified Process - is an attempt to simplify unified process and add in a couple Agile
principles such as test driven development.

• Enterprise Unified Process - for VERY BIG projects that will have a long-term commitment
for support and the eventual retirement of the software.

PRINCE2 (PRojects IN Controlled Environments 2) is the project management format mandated by
the UK government for public projects. It is common in Europe. It is not specific to software
development. PRINCE2 focuses on the process of how things are to be done. It is based on seven
principles (continued business justification, learn from experience, defined roles and responsibilities,
manage by stages, manage by exception, focus on products, and tailored to suit the project
environment). This process emphasizes management of resources, but may not be appropriate for small
projects.

Project Management Body of Knowledge (PMBOK) - is a generic project management framework
set forth by the Project Management Institute (PMI), and adopted as a standard by ANSI and IEEE. It
focuses more on what is to be done (tools and techniques). This is used as a framework for software
development when complying with those standards is a mandatory requirement.

Capability Maturity Model Integration (CMMI) - is a process improvement approach. It focuses on
the organization's needs, bureaucracy, and structure. This is not a software development methodology in
itself, but it provides a framework for reviewing and improving the software development methodology.
It defines a maturity level to quantify how well the organization is running. CMMI was developed in
the software engineering community, but has since then been generalized and become extremely
abstract.

Microsoft Solutions Framework (MSF) - This is a generic project management methodology focused
on IT including software development, and deployment of equipment. MSF uses two models; a team
model describing roles of individuals in the software development group, and a governance model
describing the stages in the development process. MSF contains templates for Agile and Capability
Maturity Model Integration.

Crystal Methods Methodology - Crystal methods are a family of related methodologies, each named
with a color. The philosophy of crystal methods is that the process should be designed around the
strengths and weaknesses of individuals on the team. The various levels of crystal method vary in how
light or heavy weight they are. The lightweight methods might be best for small, short-term projects.
The heavy weight methods are better suited for cases where human life is involved and thus bugs cannot
be tolerated. All incorporate frequent deliveries, close communication with expert users, and personal
safety.

Joint Application Design (JAD) is also referred to as Joint Application Development - This is a
process for requirements gathering in which various parties including multiple members of the client
organization spend days participating in a requirements gathering workshop. The empirical observation
is that having this better-defined set of requirements up front gives a modest reduction in development
costs.

Lean Development (LD) is sometimes called Lean Software Development (LSD). This process is
intended to give the absolute minimum cost. Developers focus on 80% today, not 100% tomorrow.
Expect poor quality, minimally featured, software made quick and cheap. If you are lucky, it will come
out just good enough to get the job done.

Spiral Model - is a software development process for creation of new technology where failure is a big
risk. Spiral projects start small, first investigating the highest risk issues then slowly expand the project
once those key components are functioning. Two or more phases of prototyping are done before the
final implementation. The spiral model is considered to be better than waterfall for large, expensive,
complicated projects. Spiral development is generally considered inappropriate for small projects.

Systems Development Life Cycle (SDLC) - Is a more formalized process for handling large projects
where documentation, training, integrity, and security are vital to the project success. SDLC projects
typically use object oriented analysis and design. Multiple models will be prepared for use cases,
relational data, user interface, and a more abstract conceptual model. Multiple types of software testing
are employed. It assumes that different management teams may be handling requirements,
implementation, deployment, and monitoring.

Apple design process. The Apple corporation has made an enormous amount of money creating
innovative software and hardware products. Apple’s product development process is somewhat unique.
Apple does a lot of design specification before beginning work on a product development project. They
produce three documents that must be approved by senior management before the project can begin.
The first document is an engineering specifications document, which details the product dimensions,
weight, battery life, features, etc. The second document is a marketing plan, which details who the
target consumer is, how much technical experience they have, what price they are willing to pay, how to
advertize and sell to them, etc. The third document is the user experience document. Apple is very
much a design company that thinks about every aspect of the user experience from the packaging to the
first thing you see when you open the box, to how many functions are too many for the product to be
conveniently usable. Once these documents are approved, the project manager has the very difficult job
of sticking to the design plans. Most companies work on a consent model… the sales department will
sign off on the product if you put in functions they suggest, the software development group signs off if
you put in their favorite features, the VP signs off if you put in her favorite feature, and the product goes
to market late with a bloat of extra features. Apple works on a consultancy model… everyone gets to
give their opinion, but it’s the project manager’s job to throw out all of those suggestions unless
everyone agrees that an extra feature is critically important. Keeping this glut of extra features out of
the products is what gives Apple products a clean, easily used design. Apple also pushes engineering
and manufacturing to find ways to follow idealistic designs and aggressive quality goals, rather than
making something similar to the initial design that was easier to engineer, program, and manufacture.
Within these aggressive guidelines, Apple has a fairly iterative process for attacking engineering
challenges. No product development organization can get everything perfect all the time, but Apple
certainly strives for perfection on the first try. Another unique aspect of the Apple culture is that they
don’t do market research... if you aren’t an industry visionary with good design sense and taste then you
should not be on the senior design team at Apple.

These management practices are all designed for managing various size groups of software developers.
However, individuals writing software (a team of one) can still pull relevant ideas from them. These
include using use cases to define requirements, making prototypes for experimental features, test driven
development, using a source code management tool like Subversion or Mercurial, using management
tools to track progress, features, & bugs, and more.

Software testing

The creation of computer software is a unique activity. It the design of other products, such as building
a house or writing a book, small mistakes may only have a minor impact. However, computer software
is very integrated so small mistakes can have a cascading impact on many functions in the software
package. Also, software source code is so readily modified that there can be a lot of pressure to get
major features working first, then go back to the same sections of code to fix the behavior for unusual
circumstances. Because of these factors, the testing and debugging cycle is key to getting reliable,
robust, bug free software.

Software testing is generally broken into two broad categories. Unit tests are test of an individual
section of code, as independently from the rest of the software as possible. These sections of code may
be termed methods, functions, subroutines, objects, or procedures depending upon the programming
language. Functional tests are tests of the entire piece of software.

These tests may be designed to test various aspects of the software including; correct behavior, security,
performance, robustness, handling heavy loads, standards compliance, and usability. Occasionally, the
same set of tests may be done multiple times to check for compatibility with various operating systems,
web browsers, or other interdependent components.

Many of the currently popular software development methodologies focus on test driven development
(TDD). This is a process in which unit tests are designed before or while creating the software to
independently ensure that each section of code is working correctly. Key tests may even be specified in
advance in the design specification documents. This cuts down on the amount of time that will be spent
on testing and debugging later. This is key to being able to frequently release new versions of the
software with some level of confidence in how well they will work.

Comparison of software development methodologies

The table above gives a sense of how the various software development methodologies are typically
characterized. Since every development team tends to adapt these methodologies to their needs, there
are probably exceptions to all of these. The following are descriptions of the table columns.

Deadline emphasis (High, Medium, Low, Very Low) – a methodology with a high deadline emphasis is
one constructed to meet release deadlines, often frequently, even at the expense of something else such
as feature completeness.

Cost emphasis (High, Medium Low, Very Low) – a methodology with a high cost emphasis has a strong
focus on keeping costs down, or staying within a fixed cost, even if something else suffers.

Quality emphasis (Very High, High, Medium, Low, Very Low) – a methodology with a high quality
emphasis is designed to produce robust, bug free software, even if it goes over time and budget targets to
achieve that goal.

Project size (Small, Medium, Large, Very Large) – a small project requires nine or fewer development
and testing staff members, medium tens of people, large over fifty, and very large in the hundreds. The
majority of software development projects in the world fall in the small category. Also, smaller projects
tend to have a shorter development time, from days to a couple years. Some of the largest software
development projects in existence are building on a code base where the earliest lines of code were
written in the 1950s or 1970s.

Release frequency (Very High, High, Medium, Low, Very Low) – a very high release frequency project
will essentially use each days build as a new version available to the public, high weeks or months
between versions released to the users, and on down to very low release frequencies that might be 5-10
years between version releases and each version may be only marginally different from the previous
version. Note that some methodologies use an iterative implementation process inside the software
development group, but are categorized as low release frequency because they less often release new
versions to the user community.

Planning emphasis (Low, Medium, High, Very High) – a low planning emphasis is where each
component is designed as it is built often without any overall design plan. A very high planning
emphasis might involve a couple years of specifications, use cases, algorithm design, etc. before
beginning to write the final production code.

Coordination tightness (Low, Medium, High, Very High) – a low coordination tightness is when each
developer works independently to build a component without an overall plan for what order components
should be built and how the components will interconnect. A very high coordination tightness is
typified by a master plan for which developer will work on which component in what order and how all
of the components will interconnect.

Why software development projects fail

There are a number of reasons that software development projects fail. Here are the most typical
problems to be aware of.

• The most frequent cause of projects being over time or over budget is incomplete or changing
requirements. This problem can be minimized by a more formalized requirements gathering
process, and by having a member of the development team who is a subject matter expert.

• Feature creep is a process by which more and more functionality is put into the product by
developers, managers, and users. This delays the release of products, or worse yet products may
be rushed to market before sufficient testing and debugging has occurred. Frequent release
development methodologies and test driven development can be good ways to minimize these
problems.

• Underestimating labor involved. If there are unknowns in how key components will work, it is
best to start small and prototype those sections of the project. There is a natural psychological
tendency to think that tasks will be easier than they really are. Once a development group has
been together for a while, the manager can figure out how to estimate the expected time to
complete work as some factor times what the development staff estimates (2X – 5X are
common).

• Lack of funding. If this is a concern, consider using one of the methodologies built around a
fixed cost or time.

• Poor knowledge of the technical field. Programmers right out of school can be eager and
productive, but years of correcting mistakes as these early career employees learn from
experience is a lot more expensive than hiring one person with years of experience in the field.

• Poor knowledge of the market. Even great software products can fail in the market place if they
come to market too soon, too late, marketed incorrectly, to a market that is too small, or a market
with too much competition. Across all business startups, failure to market the product well
enough to bring in a revenue stream that can sustain the company before startup funds are
exhausted is the cause of failure far, far more often than failure to create a usable product.

No project management system is best for all projects in all fields with all employees in all companies.
A wise choice of software development methodology will make the process significantly less painful,
and more likely to successfully accomplish the task within time and budget constraints.

Further reading

http://www.itinfo.am/eng/software-development-methodologies/

http://www.noop.nl/2008/07/the-definitive-list-of-software-development-methodologies.html

http://en.wikipedia.org/wiki/Software_development_process

The Wikipedia articles on the individual methodologies generally give a good, if minimal, overview.

Some notes on Apple product design are at
http://uxmovement.com/resources/8-things-to-know-about-the-company-culture-at-apple/
http://www.businessweek.com/the_thread/techbeat/archives/2008/03/apples_design_p.html
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/U
EGuidelines/UEGuidelines.html

An example of Agile methods to create software for the Obama election campaign is in the following
article. This illustrates how a hard deadline and well-prioritized requirements can point to a choice of
software development methodology. Aspects of both DSDM and RAD are evident in the description of
the project. They boldly cut out some best practices based on their vision that the software would not be
reused since available data sources and the popularity of internet communication venues will have
changed and thus made the software obsolete before the next election.
http://www.drdobbs.com/architecture-and-design/software-development-in-the-obama-campai/240146307

