
 1

Alabama Supercomputer Center
Alabama Research and Education Network

Introduction to
GPU Programming

with CUDA and OpenACC

 2

Contents

§ Why GPU chips and CUDA?
§ GPU chip architecture overview
§ CUDA programming
§ Queue system commands
§ Other GPU programming options
§ OpenACC programming
§ Comparing GPUs to other processors

Topics

 3

What is a GPU chip?

§ A Graphic Processing Unit (GPU) chips is an adaptation of
the technology in a video rendering chip to be used as a
math coprocessor.

§ The earliest graphic cards simply mapped memory bytes to
screen pixels – i.e. the Apple][in 1980.

§ The next generation of graphics cards (1990s) had 2D
rendering capabilities for rendering lines and shaded areas.

§ Graphics cards started accelerating 3D rendering with
standards like OpenGL and DirectX in the early 2000s.

§ The most recent graphics cards have programmable
processors, so that game physics can be offloaded from the
main processor to the GPU.

§ A series of GPU chips sometimes called GPGPU (General
Purpose GPU) have double precision capability so that they
can be used as math coprocessors.

GPU

 4

Why GPUs?

Comparison of peak theoretical GFLOPs and memory
bandwidth for NVIDIA GPUs and Intel CPUs over the
past few years.

Graphs from the NVIDIA CUDA C Programming Guide 4.0.

GPU

 5

CUDA Programming Language

The GPU chips are massive multithreaded, manycore
SIMD processors.

SIMD stands for Single Instruction Multiple Data.

Previously chips were programmed using standard
graphics APIs (DirectX, OpenGL).

CUDA, an extension of C, is the most popular GPU
programming language. CUDA can also be called
from a C++ program.

The CUDA standard has no FORTRAN support, but
Portland Group sells a third party CUDA FORTRAN.

CUDA

 6

Nvidia GPU Models

T10
§ 30 multiprocessors with

–  8 single precision thread
processors

–  2 special function units
–  Double precision unit

§ 1.3 GHz
§ 240 cores per chip
§ 1036.8 GFLOP single
§ 86.4 GFLOP double

Fermi (T20)
§ 14 multiprocessors with

–  32 thread processors are single
& double add/multiply

–  4 special function units
–  2 clock ticks per double

precision operation

§ 1.15 GHz
§ Faster memory bus
§ Multiple kernels

(subroutines) can run at
once

§ 448 cores per chip
§ 1288 GFLOP single
§ 515.2 GFLOP double

Chips

Kepler (K20)
§ 13 multiprocessors with

–  192 single precision thread
processors

–  64 double precision thread
processors

–  32 special function units

§ 0.706 GHz
§ Threads can spawn new

threads (recursion)
§ Multiple CPU cores can

access simultaneously
§ 2496 cores per chip
§ 3520 GFLOP single
§ 1170 GFLOP double

 7

GPU Programming Example

// CPU only matrix add
int main() {
 int i, j;
 for (i=0;i<N;i++) {
 for (j=0;j<N;j++) {
 C[i][j]=A[i][j]+B[i][j];
 }
 }
}

// GPU kernel
__global__ gpu(A[N][N], B[N]

[N], C[N][N]) {
 int i = threadIdx.x;
 int j = threadIdx.y;
 C[i][j]=A[i][j]+B[i][j];
}

int main() {
 dim3 dimBlk(N,N);
 gpu<<1,dimBlk>>(A,B,C);
}

CUDA

 8

GPU Execution Model

Thread is a single execution
of a kernel, and all
execute the same code

Threads within a block have

access to shared memory
for local cooperation

Kernel launched as a grid of

independent thread
blocks, and only a single
kernel executes at a time
(on T10)

Thread

Thread Block

Grid

Thread Processor

Multiprocessor

Device

Software Hardware

Code

 9

SIMD Programming

1.  Copy an array of data to the GPU.
2.  Call the GPU, specifying the dimensions of thread

blocks and number of thread blocks (called a grid).
3.  All processors are executing the same subroutine on

a different element of the array.
4.  The individual processors can choose different

branch paths. However, there is a performance
penalty as some wait while others are executing their
branch path.

5.  Copy an array of data back out to the CPU.

GPU programming is more closely tied to chip
architecture than conventional languages.

CUDA

 10

Multiple types of memory
help optimize performance

Motherboard

GPU chip

Page locked host memory – This allows the GPU to see the memory
on the motherboard. This is the slowest to access, but allows the GPU
to access the largest memory space.

Global memory – Visible to all multiprocessors on the GPU chip.
Constant memory – Device memory that is read only to the thread
processors and faster access than global memory.
Texture & Surface memory – Lower latency for reads to adjacent
array elements.

Shared memory – Shared between thread processors on the same
multiprocessor.

Local memory – accessible to the thread processor only. This is
where local variables are stored.

Multiprocessor

Thread processor

Code

 11

Calling CUDA from C++

§ #include <cuda_runtime>

§ The function call in file.cpp calls a function in file.cu
which is

extern "C" void function();

§ That function in turn calls a function that is
__global__ void function()

CAUTION: The C++ program must be named file.cpp
(not file.cc). Files named with extension .cc can be
erased by the make process.

CUDA

 12

Double Precision Support

§ The FLOPS ratings show that the Fermi chips should be
about 6X the performance of T10 chips for double
precision operations. However, the Fermi chips have an
8:1 ratio of thread processors to special function units,
and the T10 chips have a 4:1 ratio. One of our tests that
utilizes double precision and special functions showed a
2.5X improvement in speed in going from T10 to Fermi
chips.

§ Double precision on GPUs is true 64
bit. Double precision on x86 chips
is 80 bit extended double precision.

§ For double precision you must
specify the architecture like this
-arch=compute_13 -code=sm_13

§ Use double precision variables in
the Makefile like CUFILES_sm_13

§ For double precision, do NOT use
-use_fast_math 0

10
20
30
40
50
60
70
80

GPU x86_64

Double precision bits

CUDA

 13

CUDA SDK Directory Tree

§ Unlike most compilers, CUDA is designed to work within a directory
tree, rather than having source code, object and executable in the
same directory. The common tools in that directory tree must be
compiled before compiling your own programs.

§ The source code goes in
 ~/CUDA_SDK_4.0/C/src/MYPROGRAM

§ The object files get put in
 ~/CUDA_SDK_4.0/C/src/MYPROGRAM/obj/x86_64/release

§ The executables get put in
 ~/CUDA_SDK_4.0/C/bin/linux/release

§ The Makefile sets just a few variables, then loads a complex make
process with the command

 include ../../common/common.mk

CUDA

 14

Using nvcc outside the directory tree

§ Compiling from within the CUDA directory tree is not
always desired.

§ The use of the nvcc compiler directly (not with the
provided Makefile) is supported in version 3.0 and 5.0,
but not in version 4.0

§ The available compile flags can be found with the
command “nvcc --help”.

§ An error free compile and link does not necessarily
make a functioning executable.

§ In order to find out how the default build process works,
type the following

 make clean
 make -n

CUDA

 15

Changes between CUDA versions

§ CUDA is still evolving. Here are some of the things that
have changed from version 3 to 4 to 5 to 6

§ Makefile format
§ Compile commands
§ Mechanisms for error trapping.
§ Header files
§ nvcc switched from using GCC to using LLVM
§ Processor support
§ MPI integration
§ Easier memory management called “unified memory”
§ C++ 11 support
§ Template support
§ New GPU based math libraries

CUDA

 16

Catching Error Messages

 By default, NO run time error messages are generated!

§ In order to generate error messages, the following steps
should be followed.

§ The .cu file should include
#include "cutil_inline.h”

§ Allocate data with cutilSafeCall, like this
cutilSafeCall (cudaMalloc(&Data, numx*numy*sizeof(double)));

§ Immediately after running a function on the GPU, call
cutilCheckMsg(”MYFUNCTION<<<>>> failed\n");

WARNING

CUDA

 17

Common Error Messages

CAUTION: Error messages are not very indicative of the
problem.

§ An error like this might mean you forgot to include the
header file for CUDA

myprogram.cc:81: error: expected constructor,
destructor, or type conversion before ‘void’

§ An error like this indicates you have exceeded a limit
like the maximum number of threads per block.

(9) invalid configuration argument

§ If you get an error saying that -lcuda can't be found, it
means that the compile must be done on one of the
nodes with GPU chips installed on it.

CUDA

 18

Common Error Messages

§ Some things that you would expect to be compile time

errors will show up as run time errors. For example,
incorrectly passing arguments to functions.

§ You can get this error because of a thread
synchronization problem. Putting in
cudaDeviceSynchronize() calls can fix the problem.

==31102== Error: Internal profiling error
1719:999

§ If you are getting memory errors, try calling the program

like this.
cuda-memcheck program [arguments]

CUDA

 19

What algorithms work well on GPUs

§ Doing the same calculation with many pieces of input
data.

§ The number of processing steps should be at least an
order of magnitude greater than the number of pieces of
input/output data.

§ Single precision performance is better than double
precision.

§ Algorithms where most of the cores will follow the same
branch paths most of the time.

§ Algorithms that require little if any communication
between threads.

Code

 20

Adoption of GPUs at the
Alabama Supercomputer Center

Good
§ Recent versions of Amber perform well on GPUs and are

being used for production work.
§ Several universities have integrated GPU programming into

the curriculum.
§ About 5% of the applications at the Alabama Supercomputer

Center have GPU versions.

Disappointing
§ Early tests with BEAST, NAMD, and Quantum Espresso are

less than exciting. Not all algorithms are converted to GPU.

Status
§ The GPU offering remains a small test bed of 8 T10 chips, 8

Fermi chips, and 16 Kepler K20 chips.

Code

 21

Performance Optimization
§ Utilize the type of memory that will give the best

performance for the algorithm.

§ The chip is made for zero latency swapping threads so that
a different warp (group of usually 32 threads) can run while
one warp is waiting on IO, SFU, DPU. Thus it is often best
to have more threads than thread processors.

§ The best number of threads/block depends on the program,
but should be a multiple of 32 such as 64, 128, 192, 256, 768.

§ The grid size should be at least the number of
multiprocessors, and also works well as a multiple of the
number of multiprocessors.

§ If __syncthreads() slows the code, use more, smaller
blocks.

Code

 22

Mandelbrot Test

§ This is a single precision
Mandelbrot diagram generator
that is used as a simple parallel
programming example.

§ The large test run took 1 minute,
34 seconds on a single 2.26 GHz
Nehalem processor.

§ The same test took 9 seconds on
a T10 GPU after minimal
optimization of thread blocks.

§ This is a 10x speed up, but not
the 100x that marketing claims
suggest is possible.

§ In this case, the conditional do-
while inner loop probably
caused some cores to sit idle
waiting for the rest to reach their
break points.

Code

 23

Validation of Results

§ Validation is usually done using a gold kernel and
maybe a silver kernel.

§ Gold Kernel - data processed on the CPU with carefully
checked output. You compare the CUDA output to the
gold output to make sure the numerical accuracy is
within acceptable limits.

§ Silver Kernel - data processed on the GPU without
optimization or algorithmic enhancements. This is the
first step in GPU implementation. Again, comparing
optimized kernel to silver kernel shows if the
optimization reduced accuracy.

§ Both of these usually use the simplest, most naive
version of the algorithm (i.e. rectangle rule integration).

Code

 24

Other CUDA Tools

§ CUDA Memory Checker (cuda-memcheck) can be used
to find memory violations

§ CUDA debugger (cuda-gdb) is an extension of the GNU
debugger for Linux

§ NVIDIA Parallel Nsight is a debugger for Microsoft
Visual Studio

§ CUDA Visual Profiler

CUDA

 25

CUDA References

§ On the Alabama Supercomputer Center
systems, documentation is in the
directory /opt/asn/doc/gpu

– Start with README.txt and TIPS.txt
– CUDA_C_Getting_Started_Linux.pdf
– CUDA_C_Programming_Guide.pdf
– CUDA_C_Best_Practices_Guide.pdf
– Examples are in the portland_accelerator and

portland_cuda_fortran directories
– There is more information in the supplmental_docs

directory

§ A good introduction to CUDA programming
–  "CUDA BY EXAMPLE" by J. Sanders, E. Kandrot,

Addison Wesley, 2011.

Doc

 26

GPUs & the Queue System

§ The queue system at the Alabama Supercomputer
Center has a couple commands for submitting work to
the queues.

§ The “gpu_interactive” command opens an
interactive session on a GPU node. This should be
used for compiling, only if it will not compile on the
login node.

§ The “run_gpu” command is used for submitting all
production work to the queue.

§ Only one GPU is available to a job. This is a policy
restriction due to the limited number of GPU chips
available.

ASC

 27

Other GPU Programming Options
§ PGI Accelerator is a commercial compiler that allows

programming NVIDIA GPUs with OpenACC, a syntax
similar to OpenMP.

§ OpenMP is starting to release GPU features.
§ OpenCL – is a language under development for parallel

programming of many different hardware architectures
with a common syntax.

§ There are CUDA plugins for Python, Matlab, and
Mathematica

§ Math Libraries
– cuSOLVER (BLAS, Lapack)
– cuFFT
– NVIDIA Performance Primitives library – NPP
– GPULib
– FLAGON – Fortran-9x library
– Thrust (C++11)

§ Several more came and went already

Code

 28

OpenACC Example

// OpenACC matrix add
int main() {
 int i, j;
#pragma acc kernels loop gang(32), vector (16)
 for (i=0;i<N;i++) {
#pragma acc loop gang(16), vector(32)
 for (j=0;j<N;j++) {
 C[i][j]=A[i][j]+B[i][j];
 }
 }
}

OpenACC

§ openACC is easier
to program than
CUDA

§ but less efficient, so
the program wont
run as fast

 29

Common OpenACC directives
§ OpenACC directives in C and C++
 #pragma acc DIRECTIVE
§ OpenACC directives in Fortran
 !$acc DIRECTIVE
 lines of Fortran code
 !$acc end DIRECTIVE
§ Directive to attempt automatic parallelization
 #pragma acc kernels
§ Directive to parallelize the next loop
 #pragma acc parallel loop
§ Directive to specify which variables are copied, and

which are local
 #pragma acc data copy(A), create(Anew)

The data directive is often needed to cut out data bottlenecks

OpenACC

 30

Compiling and Running

§ Typical compile command for C
 pgcc -acc -Minfo=accel -ta=nvidia -o file file.c

§ Environment variable to print GPU use information at
run time

 export PGI_ACC_TIME=1
§ The program runs slightly slower with this turned on

§ Environment variable to print out information about data

transfers to the GPU at run time
 export PGI_ACC_NOTIFY=3
§ This slows down execution significantly

OpenACC

 31

Ideal cases for OpenACC

§ Programs where one or a few small sections of the
program are responsible for most of the CPU time.

§ Loops with many iterations.
§ Loops with no data dependencies between iterations.
§ Loops that work on many elements of large arrays.
§ Loops where functions can be inlined.

§ Conditional statements are OK, but better if you can
guess in advance which batches of data will follow the
same branch.

§ Portland Group compilers create programs with code
for three generations of GPUs; Tesla, Fermi, & Kepler

OpenACC

 32

What Does NOT work well

§ Loops with IO statements.

§ Loops with early exits, including do-while loops.

§ Loops with many branches to other functions.

§ Pointer arithmetic

 Confusingly, a failed compile creates a single processor
executable.

OpenACC

 33

OpenACC vs. CUDA

§ CUDA creates software for nVidia GPUs only. OpenACC
can program GPUs, Opteron, ATI, APUs, Xeon, and
Xeon Phi.

§ OpenACC does loop level parallelization. CUDA
parallelizes at the subroutine level.

§ OpenACC is easier to program, or adapt an existing
code.

§ CUDA is currently used more widely.
§ Some algorithms can be implemented in CUDA, but not

in OpenACC. i.e. recursion or early exit loops
§ OpenACC is newer (version 2.0 is out). CUDA is on

version 7
§ Both are still undergoing significant changes.

§ CUDA programs usually run faster (perhaps 30%).

Code

 34

OpenACC documentation
§ Look at the Getting Started documentation and videos at

openacc-standard.org
§ https://developer.nvidia.com/content/openacc-example-part-1
§ The PGI Acclerator Compilers OpenACC Getting Started Guide
 http://www.pgroup.com/doc/openACC_gs.pdf
§ There are example programs in the directories
 /opt/asn/doc/pgi/accelerator_examples
 /opt/asn/doc/pgi/openacc_example
§ There are tips for best results in the file
 /opt/asn/doc/gpu/openacc_tips.txt
§ OpenACC 2.0 examples are at
 http://devblogs.nvidia.com/parallelforall/7-powerful-new-features-openacc-2-0/

 Unfortunately, once you get past the introductory
documentation, you will need to read the OpenACC technical
specifications and ask questions on user forums to maximize
performance with OpenACC.

Doc

 35

Comparing GPUs to other types of processors

 36

•  4 x86 ops to add two single precision, four-component vectors

vector_result.x = vector_1.x + vector_2.x;
vector_result.y = vector_1.y + vector_2.y;
vector_result.z = vector_1.z + vector_2.z;
vector_result.w = vector_1.w + vector_2.w;

•  Using 128-bit SSE registers, pack vector components into a single
register per vector to reduce this from 4 scalar addition ops to a single
SSE vector addition

•  Intel’s Sandy Bridge architecture (used in UV) introduced AVX
instructions that further widens vector data path from 128 to 256 bits,
potentially resulting in up to a 2x performance improvement for some
applications

Vector/SIMD extensions SSE

 37

FLOPS vs Chip Architecture

§ The FLOPS (FLoating point Operations Per Second)
rating is NOT a good comparison of GPU performance
relative to conventional processor performance.

– FLOPS rating is usually a poor way to compare any types of chips.

§ The FLOPS rating for conventional processors includes
the vector math circuitry for SSE instructions. If your
program cannot use SSE instructions, a conventional
processor may under-perform it’s FLOPS rating, and the
GPU may approach the GPU FLOPS performance.

§ If your program has significant communication between
threads, or different threads take different branch paths,
the GPU may do worse than the FLOPS ratings suggest.

Chips

 38

GPU vs. Xeon vs. Xeon Phi

§ Xeon Phi is a processor with 57-61 x86 compatible cores
running at 1.053 to 1.238 GHz.

§ Xeon Phi is NOT a chip with a bunch of Xeon processor cores.
The cores on Phi are less powerful (about 1/5 speed).

§ Xeon Phi is a new chip architecture called MIC (Many Integrated
Cores). The next MIC chip will be Knights Landing.

§ OpenMP parallelized software will run on Xeon Phi, but runs
faster if you do some work to manage memory access bottle
necks.

§ Xeon Phi has SSE vector mathematics instructions. GPUs do
not do vector math.

Chips

 39

Summary
§ There is a lot of interest in the HPC community about using GPU

chips because GPUs can give 10-300 fold the processing capacity
for the dollar spent on hardware... provided you have invested the
effort to port the software to that architecture.

§ GPUs are easier to program than other coprocessor technologies
(i.e. FPGAs).

§ The GPGPU programming market is currently dominated by Nvidia
chips and the CUDA programming language.

§ CUDA is the most mature of the GPU programming options, but still
an early stage technology.

§ OpenACC is increasing in popularity.
§ CUDA is more closely tied to hardware than higher level languages

like C++.
§ Many experts predict that OpenCL could become the preferred GPU

programming method if future versions achieve the intended goal of
being a “write once – run anywhere” parallel language.

Done

 40

Alabama
Supercomputer

Authority

State of Alabama Leader and Trusted Partner for Technology

