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What is a GPU chip? 

§ A Graphic Processing Unit (GPU) chips is an adaptation of 
the technology in a video rendering chip to be used as a 
math coprocessor. 

§ The earliest graphic cards simply mapped memory bytes to 
screen pixels – i.e. the Apple ][ in 1980. 

§ The next generation of graphics cards (1990s) had 2D 
rendering capabilities for rendering lines and shaded areas. 

§ Graphics cards started accelerating 3D rendering with 
standards like OpenGL and DirectX in the early 2000s. 

§ The most recent graphics cards have programmable 
processors, so that game physics can be offloaded from the 
main processor to the GPU. 

§ A series of GPU chips sometimes called GPGPU (General 
Purpose GPU) have double precision capability so that they 
can be used as math coprocessors.  

GPU 
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Why GPUs? 

Comparison of peak theoretical GFLOPs and memory 
bandwidth for NVIDIA GPUs and Intel CPUs over the 
past few years. 
 
Graphs from the NVIDIA CUDA C Programming Guide 4.0. 

 
 

GPU 
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CUDA Programming Language 

The GPU chips are massive multithreaded, manycore 
SIMD processors. 
 
SIMD stands for Single Instruction Multiple Data. 
 
Previously chips were programmed using standard 
graphics APIs (DirectX, OpenGL). 
 
CUDA, an extension of C, is the most popular GPU 
programming language.  CUDA can also be called 
from a C++ program.   
 
The CUDA standard has no FORTRAN support, but 
Portland Group sells a third party CUDA FORTRAN. 

CUDA 
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Nvidia GPU Models 

T10 
§ 30 multiprocessors with 

–  8 single precision thread 
processors 

–  2 special function units 
–  Double precision unit 

§ 1.3 GHz 
§ 240 cores per chip 
§ 1036.8 GFLOP single 
§ 86.4 GFLOP double 

Fermi (T20) 
§ 14 multiprocessors with 

–  32 thread processors are single 
& double add/multiply 

–  4 special function units 
–  2 clock ticks per double 

precision operation 

§ 1.15 GHz 
§ Faster memory bus 
§ Multiple kernels 

(subroutines) can run at 
once  

§ 448 cores per chip 
§ 1288 GFLOP single 
§ 515.2 GFLOP double 

Chips 

Kepler (K20) 
§ 13 multiprocessors with 

–  192 single precision thread 
processors 

–  64 double precision thread 
processors 

–  32 special function units 

§ 0.706 GHz 
§ Threads can spawn new 

threads (recursion) 
§ Multiple CPU cores can 

access simultaneously 
§ 2496 cores per chip 
§ 3520 GFLOP single 
§ 1170 GFLOP double 
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GPU Programming Example 

// CPU only matrix add 
int main() { 
 int i, j; 
 for (i=0;i<N;i++) { 
  for (j=0;j<N;j++) { 
   C[i][j]=A[i][j]+B[i][j]; 
  } 
 } 
} 

// GPU kernel 
__global__ gpu(A[N][N], B[N]

[N], C[N][N]) { 
 int i = threadIdx.x; 
 int j = threadIdx.y; 
 C[i][j]=A[i][j]+B[i][j]; 
} 
 
int main() { 
 dim3 dimBlk(N,N); 
 gpu<<1,dimBlk>>(A,B,C); 
} 

CUDA 
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GPU Execution Model 

Thread is a single execution 
of a kernel, and all 
execute the same code 

 
Threads within a block have 

access to shared memory 
for local cooperation 

 
Kernel launched as a grid of 

independent thread 
blocks, and only a single 
kernel executes at a time 
(on T10) 

Thread

Thread Block

Grid

Thread Processor

Multiprocessor

Device

Software Hardware

Code 
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SIMD Programming 

1.  Copy an array of data to the GPU. 
2.  Call the GPU, specifying the dimensions of thread 

blocks and number of thread blocks (called a grid). 
3.  All processors are executing the same subroutine on 

a different element of the array. 
4.  The individual processors can choose different 

branch paths.  However, there is a performance 
penalty as some wait while others are executing their 
branch path. 

5.  Copy an array of data back out to the CPU. 

GPU programming is more closely tied to chip 
architecture than conventional languages. 

CUDA 
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Multiple types of memory 
help optimize performance 

Motherboard 
 
 
 
 
 
GPU chip 

Page locked host memory – This allows the GPU to see the memory 
on the motherboard.  This is the slowest to access, but allows the GPU 
to access the largest memory space. 
 
 
Global memory – Visible to all multiprocessors on the GPU chip.   
Constant memory – Device memory that is read only to the thread 
processors and faster access than global memory. 
Texture & Surface memory – Lower latency for reads to adjacent 
array elements. 
 
 
Shared memory – Shared between thread processors on the same 
multiprocessor. 
 
 
Local memory – accessible to the thread processor only.  This is 
where local variables are stored. 
 

Multiprocessor 
 
 
 
 
Thread processor 

Code 
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Calling CUDA from C++ 

§ #include <cuda_runtime> 

§ The function call in file.cpp calls a function in file.cu 
which is 

extern "C" void function(); 

§ That function in turn calls a function that is 
__global__ void function() 

CAUTION: The C++ program must be named file.cpp     
(not file.cc).  Files named with extension .cc can be 
erased by the make process. 

CUDA 
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Double Precision Support 

§ The FLOPS ratings show that the Fermi chips should be 
about 6X the performance of T10 chips for double 
precision operations.  However, the Fermi chips have an 
8:1 ratio of thread processors to special function units, 
and the T10 chips have a 4:1 ratio.  One of our tests that 
utilizes double precision and special functions showed a 
2.5X improvement in speed in going from T10 to Fermi 
chips. 

§ Double precision on GPUs is true 64 
bit.  Double precision on x86 chips 
is 80 bit extended double precision. 

§ For double precision you must 
specify the architecture like this        
-arch=compute_13 -code=sm_13 

§ Use double precision variables in 
the Makefile like CUFILES_sm_13 

§ For double precision, do NOT use     
-use_fast_math 0 
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Double precision bits 
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CUDA SDK Directory Tree 

§ Unlike most compilers, CUDA is designed to work within a directory 
tree, rather than having source code, object and executable in the 
same directory.  The common tools in that directory tree must be 
compiled before compiling your own programs. 

§ The source code goes in  
    ~/CUDA_SDK_4.0/C/src/MYPROGRAM 

§ The object files get put in  
    ~/CUDA_SDK_4.0/C/src/MYPROGRAM/obj/x86_64/release 

§ The executables get put in  
    ~/CUDA_SDK_4.0/C/bin/linux/release 

§ The Makefile sets just a few variables, then loads a complex make 
process with the command  

    include ../../common/common.mk 

CUDA 
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Using nvcc outside the directory tree 

§ Compiling from within the CUDA directory tree is not 
always desired. 

§ The use of the nvcc compiler directly (not with the 
provided Makefile) is supported in version 3.0 and 5.0, 
but not in version 4.0 

§ The available compile flags can be found with the 
command “nvcc --help”. 

§ An error free compile and link does not necessarily 
make a functioning executable. 

§ In order to find out how the default build process works, 
type the following 

    make clean 
   make -n 

CUDA 
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Changes between CUDA versions 

§ CUDA is still evolving.  Here are some of the things that 
have changed from version 3 to 4 to 5 to 6 

 
§ Makefile format 
§ Compile commands 
§ Mechanisms for error trapping. 
§ Header files 
§ nvcc switched from using GCC to using LLVM 
§ Processor support 
§ MPI integration 
§ Easier memory management called “unified memory” 
§ C++ 11 support 
§ Template support 
§ New GPU based math libraries 

CUDA 
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Catching Error Messages 

  By default, NO run time error messages are generated! 

§ In order to generate error messages, the following steps 
should be followed. 

§ The .cu file should include 
#include "cutil_inline.h” 

§ Allocate data with cutilSafeCall, like this 
cutilSafeCall (cudaMalloc( &Data, numx*numy*sizeof(double))); 

§ Immediately after running a function on the GPU, call 
cutilCheckMsg(”MYFUNCTION<<<>>> failed\n"); 

WARNING 

CUDA 
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Common Error Messages 

CAUTION:  Error messages are not very indicative of the 
problem. 

§ An error like this might mean you forgot to include the 
header file for CUDA 

myprogram.cc:81: error: expected constructor, 
destructor, or type conversion before ‘void’ 

§ An error like this indicates you have exceeded a limit 
like the maximum number of threads per block. 

(9) invalid configuration argument 

§ If you get an error saying that -lcuda can't be found, it 
means that the compile must be done on one of the 
nodes with GPU chips installed on it. 

CUDA 
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Common Error Messages 

 
§ Some things that you would expect to be compile time 

errors will show up as run time errors.  For example, 
incorrectly passing arguments to functions. 

§ You can get this error because of a thread 
synchronization problem.  Putting in 
cudaDeviceSynchronize() calls can fix the problem. 

==31102== Error: Internal profiling error 
1719:999 
 
§ If you are getting memory errors, try calling the program 

like this. 
cuda-memcheck program [arguments] 

CUDA 



   19 

What algorithms work well on GPUs 

§ Doing the same calculation with many pieces of input 
data. 

§ The number of processing steps should be at least an 
order of magnitude greater than the number of pieces of 
input/output data. 

§ Single precision performance is better than double 
precision. 

§ Algorithms where most of the cores will follow the same 
branch paths most of the time. 

§ Algorithms that require little if any communication 
between threads. 

Code 
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Adoption of GPUs at the  
Alabama Supercomputer Center 

Good 
§ Recent versions of Amber perform well on GPUs and are 

being used for production work. 
§ Several universities have integrated GPU programming into 

the curriculum. 
§ About 5% of the applications at the Alabama Supercomputer 

Center have GPU versions. 

Disappointing 
§ Early tests with BEAST, NAMD, and Quantum Espresso are 

less than exciting.  Not all algorithms are converted to GPU. 

Status 
§ The GPU offering remains a small test bed of 8 T10 chips, 8 

Fermi chips, and 16 Kepler K20 chips. 

Code 
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Performance Optimization 
§ Utilize the type of memory that will give the best 

performance for the algorithm. 

§ The chip is made for zero latency swapping threads so that 
a different warp (group of usually 32 threads) can run while 
one warp is waiting on IO, SFU, DPU.  Thus it is often best 
to have more threads than thread processors. 

§ The best number of threads/block depends on the program, 
but should be a multiple of 32 such as 64, 128, 192, 256, 768. 

§ The grid size should be at least the number of 
multiprocessors, and also works well as a multiple of the 
number of multiprocessors. 

§ If __syncthreads() slows the code, use more, smaller 
blocks. 

Code 
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Mandelbrot Test 

§ This is a single precision 
Mandelbrot diagram generator 
that is used as a simple parallel 
programming example. 

§ The large test run took 1 minute, 
34 seconds on a single 2.26 GHz 
Nehalem processor. 

§ The same test took 9 seconds on 
a T10 GPU after minimal 
optimization of thread blocks. 

§ This is a 10x speed up, but not 
the 100x that marketing claims 
suggest is possible. 

§ In this case, the conditional do-
while inner loop probably 
caused some cores to sit idle 
waiting for the rest to reach their 
break points.  

Code 
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Validation of Results 

§ Validation is usually done using a gold kernel and 
maybe a silver kernel. 

§ Gold Kernel - data processed on the CPU with carefully 
checked output.  You compare the CUDA output to the 
gold output to make sure the numerical accuracy is 
within acceptable limits. 

§ Silver Kernel - data processed on the GPU without 
optimization or algorithmic enhancements.  This is the 
first step in GPU implementation.  Again, comparing 
optimized kernel to silver kernel shows if the 
optimization reduced accuracy. 

§ Both of these usually use the simplest, most naive 
version of the algorithm (i.e. rectangle rule integration). 

Code 
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Other CUDA Tools 

§ CUDA Memory Checker (cuda-memcheck) can be used 
to find memory violations 

§ CUDA debugger (cuda-gdb) is an extension of the GNU 
debugger for Linux 

§ NVIDIA Parallel Nsight is a debugger for Microsoft 
Visual Studio 

§ CUDA Visual Profiler 

CUDA 
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CUDA References 

§ On the Alabama Supercomputer Center 
systems, documentation is in the 
directory   /opt/asn/doc/gpu 

– Start with README.txt and TIPS.txt 
– CUDA_C_Getting_Started_Linux.pdf 
– CUDA_C_Programming_Guide.pdf 
– CUDA_C_Best_Practices_Guide.pdf 
– Examples are in the portland_accelerator and 

portland_cuda_fortran directories 
– There is more information in the supplmental_docs 

directory 

§ A good introduction to CUDA programming  
–  "CUDA BY EXAMPLE" by J. Sanders, E. Kandrot, 

Addison Wesley, 2011. 

Doc 
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GPUs & the Queue System 

§ The queue system at the Alabama Supercomputer 
Center has a couple commands for submitting work to 
the queues. 

§ The  “gpu_interactive” command opens an 
interactive session on a GPU node.  This should be 
used for compiling, only if it will not compile on the 
login node. 

§ The “run_gpu” command is used for submitting all 
production work to the queue. 

§ Only one GPU is available to a job.  This is a policy 
restriction due to the limited number of GPU chips 
available. 

ASC 
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Other GPU Programming Options 
§ PGI Accelerator is a commercial compiler that allows 

programming NVIDIA GPUs with OpenACC, a syntax 
similar to OpenMP. 

§ OpenMP is starting to release GPU features. 
§ OpenCL – is a language under development for parallel 

programming of many different hardware architectures 
with a common syntax. 

§ There are CUDA plugins for Python, Matlab, and 
Mathematica 

§ Math Libraries 
– cuSOLVER (BLAS, Lapack)  
– cuFFT 
– NVIDIA Performance Primitives library – NPP 
– GPULib 
– FLAGON – Fortran-9x library 
– Thrust (C++11) 

§ Several more came and went already 

Code 
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OpenACC Example 

// OpenACC matrix add 
int main() { 
 int i, j; 
#pragma acc kernels loop gang(32), vector (16) 
 for (i=0;i<N;i++) { 
#pragma acc loop gang(16), vector(32) 
  for (j=0;j<N;j++) { 
   C[i][j]=A[i][j]+B[i][j]; 
  } 
 } 
} 

OpenACC 

§ openACC is easier 
to program than 
CUDA 

§ but less efficient, so 
the program wont 
run as fast 
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Common OpenACC directives 
§ OpenACC directives in C and C++ 
          #pragma acc DIRECTIVE 
§ OpenACC directives in Fortran 
          !$acc DIRECTIVE 
          lines of Fortran code 
          !$acc end DIRECTIVE 
§ Directive to attempt automatic parallelization 
          #pragma acc kernels 
§ Directive to parallelize the next loop 
          #pragma acc parallel loop 
§ Directive to specify which variables are copied, and 

which are local 
          #pragma acc data copy(A), create(Anew) 

The data directive is often needed to cut out data bottlenecks  

OpenACC 
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Compiling and Running 

§ Typical compile command for C 
          pgcc -acc -Minfo=accel -ta=nvidia -o file file.c 

§ Environment variable to print GPU use information at 
run time 

          export PGI_ACC_TIME=1 
§ The program runs slightly slower with this turned on 
           
§ Environment variable to print out information about data 

transfers to the GPU at run time 
          export PGI_ACC_NOTIFY=3 
§ This slows down execution significantly 
 

OpenACC 
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Ideal cases for OpenACC 

§ Programs where one or a few small sections of the 
program are responsible for most of the CPU time. 

§ Loops with many iterations. 
§ Loops with no data dependencies between iterations. 
§ Loops that work on many elements of large arrays. 
§ Loops where functions can be inlined. 

§ Conditional statements are OK, but better if you can 
guess in advance which batches of data will follow the 
same branch. 

§ Portland Group compilers create programs with code 
for three generations of GPUs; Tesla, Fermi, & Kepler 

OpenACC 



   32 

What Does NOT work well 

§ Loops with IO statements. 

§ Loops with early exits, including do-while loops. 

§ Loops with many branches to other functions. 

§ Pointer arithmetic 

  Confusingly, a failed compile creates a single processor 
executable. 

OpenACC 
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OpenACC vs. CUDA 

§ CUDA creates software for nVidia GPUs only.  OpenACC 
can program GPUs, Opteron, ATI, APUs, Xeon, and 
Xeon Phi. 

§ OpenACC does loop level parallelization.  CUDA 
parallelizes at the subroutine level. 

§ OpenACC is easier to program, or adapt an existing 
code. 

§ CUDA is currently used more widely. 
§ Some algorithms can be implemented in CUDA, but not 

in OpenACC.  i.e. recursion or early exit loops 
§ OpenACC is newer (version 2.0 is out).  CUDA is on 

version 7 
§ Both are still undergoing significant changes. 

§ CUDA programs usually run faster (perhaps 30%). 

Code 
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OpenACC documentation 
§ Look at the Getting Started documentation and videos at 

openacc-standard.org 
§ https://developer.nvidia.com/content/openacc-example-part-1 
§ The PGI Acclerator Compilers OpenACC Getting Started Guide  
          http://www.pgroup.com/doc/openACC_gs.pdf 
§ There are example programs in the directories  
          /opt/asn/doc/pgi/accelerator_examples 
          /opt/asn/doc/pgi/openacc_example 
§ There are tips for best results in the file 
          /opt/asn/doc/gpu/openacc_tips.txt 
§ OpenACC 2.0 examples are at  
              http://devblogs.nvidia.com/parallelforall/7-powerful-new-features-openacc-2-0/ 

  Unfortunately, once you get past the introductory 
documentation, you will need to read the OpenACC technical 
specifications and ask questions on user forums to maximize 
performance with OpenACC. 

Doc 
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Comparing GPUs to other types of processors 
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•  4 x86 ops to add two single precision, four-component vectors 
 
vector_result.x = vector_1.x + vector_2.x; 
vector_result.y = vector_1.y + vector_2.y; 
vector_result.z = vector_1.z + vector_2.z; 
vector_result.w = vector_1.w + vector_2.w; 
 
•  Using 128-bit SSE registers, pack vector components into a single 
register per vector to reduce this from 4 scalar addition ops to a single 
SSE vector addition 

•  Intel’s Sandy Bridge architecture (used in UV) introduced AVX 
instructions that further widens vector data path from 128 to 256 bits, 
potentially resulting in up to a 2x performance improvement for some 
applications 

Vector/SIMD extensions SSE 
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FLOPS vs Chip Architecture 

§ The FLOPS (FLoating point Operations Per Second) 
rating is NOT a good comparison of GPU performance 
relative to conventional processor performance.   

– FLOPS rating is usually a poor way to compare any types of chips. 

§ The FLOPS rating for conventional processors includes 
the vector math circuitry for SSE instructions.  If your 
program cannot use SSE instructions, a conventional 
processor may under-perform it’s FLOPS rating, and the 
GPU may approach the GPU FLOPS performance.   

§ If your program has significant communication between 
threads, or different threads take different branch paths, 
the GPU may do worse than the FLOPS ratings suggest. 

Chips 
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GPU  vs.  Xeon  vs.  Xeon Phi 

§ Xeon Phi is a processor with 57-61 x86 compatible cores 
running at 1.053 to 1.238 GHz. 

§ Xeon Phi is NOT a chip with a bunch of Xeon processor cores.  
The cores on Phi are less powerful (about 1/5 speed). 

§ Xeon Phi is a new chip architecture called MIC (Many Integrated 
Cores).  The next MIC chip will be Knights Landing. 

§ OpenMP parallelized software will run on Xeon Phi, but runs 
faster if you do some work to manage memory access bottle 
necks. 

§ Xeon Phi has SSE vector mathematics instructions.  GPUs do 
not do vector math. 

Chips 
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Summary 
§ There is a lot of interest in the HPC community about using GPU 

chips because GPUs can give 10-300 fold the processing capacity 
for the dollar spent on hardware... provided you have invested the 
effort to port the software to that architecture. 

§ GPUs are easier to program than other coprocessor technologies 
(i.e. FPGAs). 

§ The GPGPU programming market is currently dominated by Nvidia 
chips and the CUDA programming language. 

§ CUDA is the most mature of the GPU programming options, but still 
an early stage technology. 

§ OpenACC is increasing in popularity. 
§ CUDA is more closely tied to hardware than higher level languages 

like C++. 
§ Many experts predict that OpenCL could become the preferred GPU 

programming method if future versions achieve the intended goal of 
being a “write once – run anywhere” parallel language. 

Done 
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